AI资讯新闻榜单内容搜索-LLM

AITNT-国内领先的一站式人工智能新闻资讯网站
# 热门搜索 #
搜索: LLM
Agentic Deep Research新范式,推理能力再突破,可信度增加,蚂蚁安全团队出品

Agentic Deep Research新范式,推理能力再突破,可信度增加,蚂蚁安全团队出品

Agentic Deep Research新范式,推理能力再突破,可信度增加,蚂蚁安全团队出品

尽管 LLM 的能力与日俱增,但其在复杂任务上的表现仍受限于静态的内部知识。为从根本上解决这一限制,突破 AI 能力界限,业界研究者们提出了 Agentic Deep Research 系统,在该系统中基于 LLM 的 Agent 通过自主推理、调用搜索引擎和迭代地整合信息来给出全面、有深度且正确性有保障的解决方案。

来自主题: AI技术研报
6511 点击    2025-08-27 17:05
Coinbase强制全员上手AI工具,拒绝者直接开除

Coinbase强制全员上手AI工具,拒绝者直接开除

Coinbase强制全员上手AI工具,拒绝者直接开除

LLM 发展至今,编程能力已经非常强大,成为了很多开发者和软件工程师的「标配」,甚至谷歌还曾宣称其 50% 的代码都是 AI 编写的。

来自主题: AI资讯
6717 点击    2025-08-23 16:17
dLLM的「Free Lunch」!浙大&蚂蚁利用中间结果显著提升扩散语言模型

dLLM的「Free Lunch」!浙大&蚂蚁利用中间结果显著提升扩散语言模型

dLLM的「Free Lunch」!浙大&蚂蚁利用中间结果显著提升扩散语言模型

近年来,扩散大语言模型(Diffusion Large Language Models, dLLMs)正迅速崭露头角,成为文本生成领域的一股新势力。与传统自回归(Autoregressive, AR)模型从左到右逐字生成不同,dLLM 依托迭代去噪的生成机制,不仅能够一次性生成多个 token,还能在对话、推理、创作等任务中展现出独特的优势。

来自主题: AI技术研报
7021 点击    2025-08-20 16:26
GPT-5、Grok 4、o3 Pro都零分,史上最难AI评测基准换它了

GPT-5、Grok 4、o3 Pro都零分,史上最难AI评测基准换它了

GPT-5、Grok 4、o3 Pro都零分,史上最难AI评测基准换它了

前沿 AI 模型真的能做到博士级推理吗? 前段时间,谷歌、OpenAI 的模型都在数学奥林匹克(IMO)水平测试中达到了金牌水准,这样的表现让人很容易联想到 LLM 是不是已经具备了解决博士级科研难题的推理能力?

来自主题: AI资讯
7672 点击    2025-08-15 20:41
速递|Anthropic仅收购Humanloop创始团队及工程师,曾融资790万美金,AI安全“特种部队”就位

速递|Anthropic仅收购Humanloop创始团队及工程师,曾融资790万美金,AI安全“特种部队”就位

速递|Anthropic仅收购Humanloop创始团队及工程师,曾融资790万美金,AI安全“特种部队”就位

Anthropic 已收购 Humanloop 的联合创始人和大部分团队成员,该公司是一个专注于提示管理、LLM 评估和可观测性的平台,此举旨在强化其企业战略。

来自主题: AI资讯
5823 点击    2025-08-15 11:54
ARPO:智能体强化策略优化,让Agent在关键时刻多探索一步

ARPO:智能体强化策略优化,让Agent在关键时刻多探索一步

ARPO:智能体强化策略优化,让Agent在关键时刻多探索一步

在可验证强化学习(RLVR)的推动下,大语言模型在单轮推理任务中已展现出不俗表现。然而在真实推理场景中,LLM 往往需要结合外部工具进行多轮交互,现有 RL 算法在平衡模型的长程推理与多轮工具交互能力方面仍存在不足。

来自主题: AI技术研报
5855 点击    2025-08-10 13:29
扩散LLM推理新范式:打破生成长度限制,实现动态自适应调节

扩散LLM推理新范式:打破生成长度限制,实现动态自适应调节

扩散LLM推理新范式:打破生成长度限制,实现动态自适应调节

随着 Gemini-Diffusion,Seed-Diffusion 等扩散大语言模型(DLLM)的发布,这一领域成为了工业界和学术界的热门方向。但是,当前 DLLM 存在着在推理时必须采用预设固定长度的限制,对于不同任务都需要专门调整才能达到最优效果。

来自主题: AI资讯
6719 点击    2025-08-09 11:16
硬核拆解大模型,从 DeepSeek-V3 到 Kimi K2 ,一文看懂 LLM 主流架构

硬核拆解大模型,从 DeepSeek-V3 到 Kimi K2 ,一文看懂 LLM 主流架构

硬核拆解大模型,从 DeepSeek-V3 到 Kimi K2 ,一文看懂 LLM 主流架构

自首次提出 GPT 架构以来,转眼已经过去了七年。 如果从 2019 年的 GPT-2 出发,回顾至 2024–2025 年的 DeepSeek-V3 和 LLaMA 4,不难发现一个有趣的现象:尽管模型能力不断提升,但其整体架构在这七年中保持了高度一致。

来自主题: AI技术研报
6943 点击    2025-08-08 11:52
Discrete Tokenization:多模态大模型的关键基石,首个系统化综述发布

Discrete Tokenization:多模态大模型的关键基石,首个系统化综述发布

Discrete Tokenization:多模态大模型的关键基石,首个系统化综述发布

近年来,大语言模型(LLM)在语言理解、生成和泛化方面取得了突破性进展,并广泛应用于各种文本任务。随着研究的深入,人们开始关注将 LLM 的能力扩展至非文本模态,例如图像、音频、视频、图结构、推荐系统等。

来自主题: AI技术研报
6209 点击    2025-08-06 12:18